Embedded_codes/AHRS/madgwick_AHRS/madgwick_AHRS.ino
2018-02-18 14:02:33 +05:30

290 lines
9.8 KiB
C++

//ines (233 sloc) 9.04 KB
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#include "Wire.h"
// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"
#include "MPU6050.h"
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 accelgyro;
int16_t ax, ay, az;
int16_t gx, gy, gz;
int16_t mx, my, mz;
// System constants
#define LED_PIN 13
//fusion
float deltat = 0.001f;
float lastt = 0;
float ct = 0;
float l = 0;
float gyroMeasError = 0; //3.14159265358979 * (0 / 180);
float gyroMeasDrift = 0;
float beta = sqrt(3.0 / 4.0) * gyroMeasError;
float zeta = sqrt(3.0 / 4.0) * gyroMeasDrift;
int b = 0;
// Global system variables
float a_x, a_y, a_z;
float w_x, w_y, w_z;
float m_x, m_y, m_z;
float SEq_1 = 1, SEq_2 = 0, SEq_3 = 0, SEq_4 = 0;
float b_x = 1, b_z = 0;
float w_bx = 0, w_by = 0, w_bz = 0;
// Local system variables
// end fusion
bool blinkState = false;
void setup() {
// join I2C bus (I2Cdev library doesn't do this automatically)
Wire.begin();
// initialize serial communication
// (38400 chosen because it works as well at 8MHz as it does at 16MHz, but
// it's really up to you depending on your project)
Serial.begin(38400);
// initialize device
Serial.println("Initializing I2C devices...");
accelgyro.initialize();
accelgyro.setFullScaleGyroRange(1); //set range to +-500°/s
accelgyro.setFullScaleAccelRange(0); //set range to +-2g
// verify connection
Serial.println("Testing device connections...");
Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed");
// configure Arduino LED for
pinMode(LED_PIN, OUTPUT);
}
float n2R(int n, float intercept) { // number to degrees
float deg = ((n/32768.0) * 500.0 + intercept);
if (abs(deg) < .3) {
return 0;
}
return deg * (1/57.29578);
}
float n2g(int n) { // number to g-force // useless because we're looking at magnitude
return n * 0.00006103515626;// 1/32768.0 * 2;
}
double getPitch(double q0, double q1, double q2, double q3) {
double top = 2*(q1*q3 + q0*q2);
double bottom = sqrt(1-pow((2*q1*q3+2*q0*q2),2));
return (-atan(top/bottom))*57.29578;
}
double getYaw(double q0, double q1, double q2, double q3) {
double arg1 = 2*(q2*q3-q0*q1);
double arg2 = 2*pow(q0,2) - 1 + 2*pow(q3,2);
return atan2(arg1,arg2)*57.29578;
}
double getRoll(double q0, double q1, double q2, double q3) {
double arg1 = 2*(q1*q2-q0*q3);
double arg2 = 2*pow(q0,2) - 1 + 2*pow(q1,2);
return atan2(arg1,arg2)*57.29578;
}
void loop() {
// read raw accel/gyro measurements from device
//if (accelgyro.testConnection()) {
//if (b > 0) {
accelgyro.getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz);
ct = millis();
deltat = (ct - lastt) * 0.001;
Serial.print("p/y/r"); Serial.print("\t");
Serial.print(ax); Serial.print("\t");
Serial.print(ay); Serial.print("\t");
Serial.print(az); Serial.print("\t");
Serial.print("p/y/r"); Serial.print("\t");
Serial.print(gx); Serial.print("\t");
Serial.print(gy); Serial.print("\t");
Serial.print(gz); Serial.print("\t");
Serial.print("p/y/r"); Serial.print("\t");
Serial.print(mx); Serial.print("\t");
Serial.print(my); Serial.print("\t");
Serial.println(mz);
/*
lastt = ct;
float xR = n2R(gx, -0.926877914);
float yR = n2R(gy, 0.758192);
float zR = n2R(gz, 1.94250294);
if (abs(zR) > abs(l)) {
l = zR;
}
filterUpdate(xR, yR, zR, ax, ay, az, mx, my, mz);
// if (b % 25 == 0) {
double pitch = getPitch(SEq_1, SEq_2, SEq_3, SEq_4);
double yaw = getYaw(SEq_1, SEq_2, SEq_3, SEq_4);
double roll = getRoll(SEq_1, SEq_2, SEq_3, SEq_4);
Serial.print("p/y/r"); Serial.print("\t");
Serial.print(pitch); Serial.print("\t");
Serial.print(yaw); Serial.print("\t");
Serial.print(roll); Serial.print("\t");
Serial.println(l * 180/3.14159);// Serial.print("\t");
} else {
lastt = millis();
}
b++;
blinkState = !blinkState;
digitalWrite(LED_PIN, blinkState);
}
else {
Serial.println("MPU6050 connection failed");
}*/
}
void filterUpdate(float w_x, float w_y, float w_z, float a_x, float a_y, float a_z, float m_x, float m_y, float m_z) {
// local system variables
float norm; // vector norm
float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements // objective function elements
float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33,
J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; // objective function Jacobian elements
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4;
float w_err_x, w_err_y, w_err_z;
float h_x, h_y, h_z;
// axulirary variables to avoid repeated calculations
float halfSEq_1 = 0.5f * SEq_1;
float halfSEq_2 = 0.5f * SEq_2;
float halfSEq_3 = 0.5f * SEq_3;
float halfSEq_4 = 0.5f * SEq_4;
float twoSEq_1 = 2.0f * SEq_1;
float twoSEq_2 = 2.0f * SEq_2;
float twoSEq_3 = 2.0f * SEq_3;
float twoSEq_4 = 2.0f * SEq_4;
float twob_x = 2.0f * b_x;
float twob_z = 2.0f * b_z;
float twob_xSEq_1 = 2.0f * b_x * SEq_1;
float twob_xSEq_2 = 2.0f * b_x * SEq_2;
float twob_xSEq_3 = 2.0f * b_x * SEq_3;
float twob_xSEq_4 = 2.0f * b_x * SEq_4;
float twob_zSEq_1 = 2.0f * b_z * SEq_1;
float twob_zSEq_2 = 2.0f * b_z * SEq_2;
float twob_zSEq_3 = 2.0f * b_z * SEq_3;
float twob_zSEq_4 = 2.0f * b_z * SEq_4;
float SEq_1SEq_2;
float SEq_1SEq_3 = SEq_1 * SEq_3;
float SEq_1SEq_4;
float SEq_2SEq_3;
float SEq_2SEq_4 = SEq_2 * SEq_4;
float SEq_3SEq_4;
float twom_x = 2.0f * m_x;
float twom_y = 2.0f * m_y;
float twom_z = 2.0f * m_z;
norm = sqrt(a_x * a_x + a_y * a_y + a_z * a_z);
a_x /= norm;
a_y /= norm;
a_z /= norm;
// normalise the magnetometer measurement
norm = sqrt(m_x * m_x + m_y * m_y + m_z * m_z);
m_x /= norm;
m_y /= norm;
m_z /= norm;
// compute the objective function and Jacobian
f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - a_x;
f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - a_y;
f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - a_z;
f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - m_x;
f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - m_y;
f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - m_z;
J_11or24 = twoSEq_3;
J_12or23 = 2.0f * SEq_4;
J_13or22 = twoSEq_1;
J_14or21 = twoSEq_2;
J_32 = 2.0f * J_14or21;
J_33 = 2.0f * J_11or24;
J_41 = twob_zSEq_3;
J_42 = twob_zSEq_4;
J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1;
J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2;
J_51 = twob_xSEq_4 - twob_zSEq_2;
J_52 = twob_xSEq_3 + twob_zSEq_1;
J_53 = twob_xSEq_2 + twob_zSEq_4;
J_54 = twob_xSEq_1 - twob_zSEq_3;
J_61 = twob_xSEq_3;
J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2;
J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3;
J_64 = twob_xSEq_2;
SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 -J_41 * f_4 - J_51 * f_5 + J_61 * f_6;
SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 -J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6;
SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6;
SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6;
// normalise the gradient to estimate direction of the gyroscope error
norm = sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4);
SEqHatDot_1 = SEqHatDot_1 / norm;
SEqHatDot_2 = SEqHatDot_2 / norm;
SEqHatDot_3 = SEqHatDot_3 / norm;
SEqHatDot_4 = SEqHatDot_4 / norm;
w_err_x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3;
w_err_y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2;
w_err_z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1;
w_bx += w_err_x * deltat * zeta;
w_by += w_err_y * deltat * zeta;
w_bz += w_err_z * deltat * zeta;
w_x -= w_bx;
w_y -= w_by;
w_z -= w_bz;
SEqDot_omega_1 = -halfSEq_2 * w_x - halfSEq_3 * w_y - halfSEq_4 * w_z;
SEqDot_omega_2 = halfSEq_1 * w_x + halfSEq_3 * w_z - halfSEq_4 * w_y;
SEqDot_omega_3 = halfSEq_1 * w_y - halfSEq_2 * w_z + halfSEq_4 * w_x;
SEqDot_omega_4 = halfSEq_1 * w_z + halfSEq_2 * w_y - halfSEq_3 * w_x;
SEq_1 += (SEqDot_omega_1 - (beta *SEqHatDot_1)) * deltat;
SEq_2 += (SEqDot_omega_2 - (beta *SEqHatDot_2)) * deltat;
SEq_3 += (SEqDot_omega_3 - (beta *SEqHatDot_3)) * deltat;
SEq_4 += (SEqDot_omega_4 - (beta *SEqHatDot_4)) * deltat;
norm = sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4);
SEq_1 /= norm;
SEq_2 /= norm;
SEq_3 /= norm;
SEq_4 /= norm;
// compute flux in the earth frame
SEq_1SEq_2 = SEq_1 * SEq_2;
SEq_1SEq_3 = SEq_1 * SEq_3;
SEq_1SEq_4 = SEq_1 * SEq_4;
SEq_3SEq_4 = SEq_3 * SEq_4;
SEq_2SEq_3 = SEq_2 * SEq_3;
SEq_2SEq_4 = SEq_2 * SEq_4;
h_x = twom_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom_y * (SEq_2SEq_3 - SEq_1SEq_4) + twom_z * (SEq_2SEq_4 + SEq_1SEq_3);
h_y = twom_x * (SEq_2SEq_3 + SEq_1SEq_4) + twom_y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom_z * (SEq_3SEq_4 - SEq_1SEq_2);
h_z = twom_x * (SEq_2SEq_4 - SEq_1SEq_3) + twom_y * (SEq_3SEq_4 + SEq_1SEq_2) + twom_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3);
// normalise the flux vector to have only components in the x and z
b_x = sqrt((h_x * h_x) + (h_y * h_y));
b_z = h_z;
}