//ines (233 sloc) 9.04 KB // Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation // is used in I2Cdev.h #include "Wire.h" // I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files // for both classes must be in the include path of your project #include "I2Cdev.h" #include "MPU6050.h" // class default I2C address is 0x68 // specific I2C addresses may be passed as a parameter here // AD0 low = 0x68 (default for InvenSense evaluation board) // AD0 high = 0x69 MPU6050 accelgyro; int16_t ax, ay, az; int16_t gx, gy, gz; int16_t mx, my, mz; // System constants #define LED_PIN 13 //fusion float deltat = 0.001f; float lastt = 0; float ct = 0; float l = 0; float gyroMeasError = 0; //3.14159265358979 * (0 / 180); float gyroMeasDrift = 0; float beta = sqrt(3.0 / 4.0) * gyroMeasError; float zeta = sqrt(3.0 / 4.0) * gyroMeasDrift; int b = 0; // Global system variables float a_x, a_y, a_z; float w_x, w_y, w_z; float m_x, m_y, m_z; float SEq_1 = 1, SEq_2 = 0, SEq_3 = 0, SEq_4 = 0; float b_x = 1, b_z = 0; float w_bx = 0, w_by = 0, w_bz = 0; // Local system variables // end fusion bool blinkState = false; void setup() { // join I2C bus (I2Cdev library doesn't do this automatically) Wire.begin(); // initialize serial communication // (38400 chosen because it works as well at 8MHz as it does at 16MHz, but // it's really up to you depending on your project) Serial.begin(38400); // initialize device Serial.println("Initializing I2C devices..."); accelgyro.initialize(); accelgyro.setFullScaleGyroRange(1); //set range to +-500°/s accelgyro.setFullScaleAccelRange(0); //set range to +-2g // verify connection Serial.println("Testing device connections..."); Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed"); // configure Arduino LED for pinMode(LED_PIN, OUTPUT); } float n2R(int n, float intercept) { // number to degrees float deg = ((n/32768.0) * 500.0 + intercept); if (abs(deg) < .3) { return 0; } return deg * (1/57.29578); } float n2g(int n) { // number to g-force // useless because we're looking at magnitude return n * 0.00006103515626;// 1/32768.0 * 2; } double getPitch(double q0, double q1, double q2, double q3) { double top = 2*(q1*q3 + q0*q2); double bottom = sqrt(1-pow((2*q1*q3+2*q0*q2),2)); return (-atan(top/bottom))*57.29578; } double getYaw(double q0, double q1, double q2, double q3) { double arg1 = 2*(q2*q3-q0*q1); double arg2 = 2*pow(q0,2) - 1 + 2*pow(q3,2); return atan2(arg1,arg2)*57.29578; } double getRoll(double q0, double q1, double q2, double q3) { double arg1 = 2*(q1*q2-q0*q3); double arg2 = 2*pow(q0,2) - 1 + 2*pow(q1,2); return atan2(arg1,arg2)*57.29578; } void loop() { // read raw accel/gyro measurements from device //if (accelgyro.testConnection()) { //if (b > 0) { accelgyro.getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz); ct = millis(); deltat = (ct - lastt) * 0.001; Serial.print("p/y/r"); Serial.print("\t"); Serial.print(ax); Serial.print("\t"); Serial.print(ay); Serial.print("\t"); Serial.print(az); Serial.print("\t"); Serial.print("p/y/r"); Serial.print("\t"); Serial.print(gx); Serial.print("\t"); Serial.print(gy); Serial.print("\t"); Serial.print(gz); Serial.print("\t"); Serial.print("p/y/r"); Serial.print("\t"); Serial.print(mx); Serial.print("\t"); Serial.print(my); Serial.print("\t"); Serial.println(mz); /* lastt = ct; float xR = n2R(gx, -0.926877914); float yR = n2R(gy, 0.758192); float zR = n2R(gz, 1.94250294); if (abs(zR) > abs(l)) { l = zR; } filterUpdate(xR, yR, zR, ax, ay, az, mx, my, mz); // if (b % 25 == 0) { double pitch = getPitch(SEq_1, SEq_2, SEq_3, SEq_4); double yaw = getYaw(SEq_1, SEq_2, SEq_3, SEq_4); double roll = getRoll(SEq_1, SEq_2, SEq_3, SEq_4); Serial.print("p/y/r"); Serial.print("\t"); Serial.print(pitch); Serial.print("\t"); Serial.print(yaw); Serial.print("\t"); Serial.print(roll); Serial.print("\t"); Serial.println(l * 180/3.14159);// Serial.print("\t"); } else { lastt = millis(); } b++; blinkState = !blinkState; digitalWrite(LED_PIN, blinkState); } else { Serial.println("MPU6050 connection failed"); }*/ } void filterUpdate(float w_x, float w_y, float w_z, float a_x, float a_y, float a_z, float m_x, float m_y, float m_z) { // local system variables float norm; // vector norm float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements // objective function elements float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; // objective function Jacobian elements float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; float w_err_x, w_err_y, w_err_z; float h_x, h_y, h_z; // axulirary variables to avoid repeated calculations float halfSEq_1 = 0.5f * SEq_1; float halfSEq_2 = 0.5f * SEq_2; float halfSEq_3 = 0.5f * SEq_3; float halfSEq_4 = 0.5f * SEq_4; float twoSEq_1 = 2.0f * SEq_1; float twoSEq_2 = 2.0f * SEq_2; float twoSEq_3 = 2.0f * SEq_3; float twoSEq_4 = 2.0f * SEq_4; float twob_x = 2.0f * b_x; float twob_z = 2.0f * b_z; float twob_xSEq_1 = 2.0f * b_x * SEq_1; float twob_xSEq_2 = 2.0f * b_x * SEq_2; float twob_xSEq_3 = 2.0f * b_x * SEq_3; float twob_xSEq_4 = 2.0f * b_x * SEq_4; float twob_zSEq_1 = 2.0f * b_z * SEq_1; float twob_zSEq_2 = 2.0f * b_z * SEq_2; float twob_zSEq_3 = 2.0f * b_z * SEq_3; float twob_zSEq_4 = 2.0f * b_z * SEq_4; float SEq_1SEq_2; float SEq_1SEq_3 = SEq_1 * SEq_3; float SEq_1SEq_4; float SEq_2SEq_3; float SEq_2SEq_4 = SEq_2 * SEq_4; float SEq_3SEq_4; float twom_x = 2.0f * m_x; float twom_y = 2.0f * m_y; float twom_z = 2.0f * m_z; norm = sqrt(a_x * a_x + a_y * a_y + a_z * a_z); a_x /= norm; a_y /= norm; a_z /= norm; // normalise the magnetometer measurement norm = sqrt(m_x * m_x + m_y * m_y + m_z * m_z); m_x /= norm; m_y /= norm; m_z /= norm; // compute the objective function and Jacobian f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - a_x; f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - a_y; f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - a_z; f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - m_x; f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - m_y; f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - m_z; J_11or24 = twoSEq_3; J_12or23 = 2.0f * SEq_4; J_13or22 = twoSEq_1; J_14or21 = twoSEq_2; J_32 = 2.0f * J_14or21; J_33 = 2.0f * J_11or24; J_41 = twob_zSEq_3; J_42 = twob_zSEq_4; J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; J_51 = twob_xSEq_4 - twob_zSEq_2; J_52 = twob_xSEq_3 + twob_zSEq_1; J_53 = twob_xSEq_2 + twob_zSEq_4; J_54 = twob_xSEq_1 - twob_zSEq_3; J_61 = twob_xSEq_3; J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2; J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3; J_64 = twob_xSEq_2; SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 -J_41 * f_4 - J_51 * f_5 + J_61 * f_6; SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 -J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6; SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6; SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6; // normalise the gradient to estimate direction of the gyroscope error norm = sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); SEqHatDot_1 = SEqHatDot_1 / norm; SEqHatDot_2 = SEqHatDot_2 / norm; SEqHatDot_3 = SEqHatDot_3 / norm; SEqHatDot_4 = SEqHatDot_4 / norm; w_err_x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3; w_err_y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2; w_err_z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1; w_bx += w_err_x * deltat * zeta; w_by += w_err_y * deltat * zeta; w_bz += w_err_z * deltat * zeta; w_x -= w_bx; w_y -= w_by; w_z -= w_bz; SEqDot_omega_1 = -halfSEq_2 * w_x - halfSEq_3 * w_y - halfSEq_4 * w_z; SEqDot_omega_2 = halfSEq_1 * w_x + halfSEq_3 * w_z - halfSEq_4 * w_y; SEqDot_omega_3 = halfSEq_1 * w_y - halfSEq_2 * w_z + halfSEq_4 * w_x; SEqDot_omega_4 = halfSEq_1 * w_z + halfSEq_2 * w_y - halfSEq_3 * w_x; SEq_1 += (SEqDot_omega_1 - (beta *SEqHatDot_1)) * deltat; SEq_2 += (SEqDot_omega_2 - (beta *SEqHatDot_2)) * deltat; SEq_3 += (SEqDot_omega_3 - (beta *SEqHatDot_3)) * deltat; SEq_4 += (SEqDot_omega_4 - (beta *SEqHatDot_4)) * deltat; norm = sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); SEq_1 /= norm; SEq_2 /= norm; SEq_3 /= norm; SEq_4 /= norm; // compute flux in the earth frame SEq_1SEq_2 = SEq_1 * SEq_2; SEq_1SEq_3 = SEq_1 * SEq_3; SEq_1SEq_4 = SEq_1 * SEq_4; SEq_3SEq_4 = SEq_3 * SEq_4; SEq_2SEq_3 = SEq_2 * SEq_3; SEq_2SEq_4 = SEq_2 * SEq_4; h_x = twom_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom_y * (SEq_2SEq_3 - SEq_1SEq_4) + twom_z * (SEq_2SEq_4 + SEq_1SEq_3); h_y = twom_x * (SEq_2SEq_3 + SEq_1SEq_4) + twom_y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom_z * (SEq_3SEq_4 - SEq_1SEq_2); h_z = twom_x * (SEq_2SEq_4 - SEq_1SEq_3) + twom_y * (SEq_3SEq_4 + SEq_1SEq_2) + twom_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3); // normalise the flux vector to have only components in the x and z b_x = sqrt((h_x * h_x) + (h_y * h_y)); b_z = h_z; }