haar_cascades added

This commit is contained in:
yikestone 2018-02-22 20:45:49 +05:30
parent c932efe7ff
commit a9a97e356c
16 changed files with 4552 additions and 0 deletions

View File

@ -0,0 +1,7 @@
These are haar cascades of Tennis Ball trained using OpenCV haar training module.
The cascades were trained on images captured by Pi Camera.
It took more than 72 hours to train cascade4 alone on i7 4720 HQ, 8GB RAM and GTX 950M GPU.
The OpenCV implementation of haar training module is not GPU intensive, it works only on CPU.

View File

@ -0,0 +1,671 @@
<?xml version="1.0"?>
<opencv_storage>
<cascade>
<stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>60</height>
<width>60</width>
<stageParams>
<boostType>GAB</boostType>
<minHitRate>9.9500000476837158e-01</minHitRate>
<maxFalseAlarm>5.0000000000000000e-01</maxFalseAlarm>
<weightTrimRate>9.4999999999999996e-01</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount>
<featSize>1</featSize>
<mode>ALL</mode></featureParams>
<stageNum>5</stageNum>
<stages>
<!-- stage 0 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-9.6760243177413940e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 13 -3.4923627972602844e-02</internalNodes>
<leafValues>
8.0457144975662231e-01 -1.5176470577716827e-01</leafValues></_>
<_>
<internalNodes>
0 -1 27 -2.0415836843312718e-06</internalNodes>
<leafValues>
5.3629475831985474e-01 -4.4248417019844055e-01</leafValues></_>
<_>
<internalNodes>
0 -1 3 -5.9842993505299091e-03</internalNodes>
<leafValues>
7.0208656787872314e-01 -2.9077333211898804e-01</leafValues></_>
<_>
<internalNodes>
0 -1 2 4.3908408842980862e-03</internalNodes>
<leafValues>
-3.5565379261970520e-01 7.5344038009643555e-01</leafValues></_>
<_>
<internalNodes>
0 -1 38 -5.1472703926265240e-03</internalNodes>
<leafValues>
7.0430231094360352e-01 -2.3011800646781921e-01</leafValues></_>
<_>
<internalNodes>
0 -1 30 -2.3857555788708851e-06</internalNodes>
<leafValues>
3.8274797797203064e-01 -4.5314458012580872e-01</leafValues></_></weakClassifiers></_>
<!-- stage 1 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-5.8807128667831421e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 0 -6.3857972621917725e-01</internalNodes>
<leafValues>
-7.2234272956848145e-01 4.9615254998207092e-01</leafValues></_>
<_>
<internalNodes>
0 -1 46 8.3797909319400787e-03</internalNodes>
<leafValues>
-2.8236722946166992e-01 7.8660732507705688e-01</leafValues></_>
<_>
<internalNodes>
0 -1 5 -4.6119615435600281e-03</internalNodes>
<leafValues>
7.3431164026260376e-01 -2.3560579121112823e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33 2.6962763968185754e-06</internalNodes>
<leafValues>
-6.0250532627105713e-01 3.7115478515625000e-01</leafValues></_>
<_>
<internalNodes>
0 -1 6 6.1006699688732624e-03</internalNodes>
<leafValues>
-2.1697346866130829e-01 8.0955433845520020e-01</leafValues></_>
<_>
<internalNodes>
0 -1 18 -1.1976118199527264e-02</internalNodes>
<leafValues>
6.8989562988281250e-01 -2.4896477162837982e-01</leafValues></_>
<_>
<internalNodes>
0 -1 39 2.6390668936073780e-03</internalNodes>
<leafValues>
-1.8808977305889130e-01 8.7734037637710571e-01</leafValues></_></weakClassifiers></_>
<!-- stage 2 -->
<_>
<maxWeakCount>12</maxWeakCount>
<stageThreshold>-8.2762473821640015e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 23 -1.9978667751274770e-06</internalNodes>
<leafValues>
6.4401620626449585e-01 -8.1190794706344604e-02</leafValues></_>
<_>
<internalNodes>
0 -1 4 -5.1410822197794914e-03</internalNodes>
<leafValues>
6.7678034305572510e-01 -2.3836985230445862e-01</leafValues></_>
<_>
<internalNodes>
0 -1 41 -3.8742050528526306e-03</internalNodes>
<leafValues>
8.6291617155075073e-01 -1.3427679240703583e-01</leafValues></_>
<_>
<internalNodes>
0 -1 44 2.0549092441797256e-03</internalNodes>
<leafValues>
-2.8043743968009949e-01 7.1094113588333130e-01</leafValues></_>
<_>
<internalNodes>
0 -1 11 -2.6738857850432396e-03</internalNodes>
<leafValues>
7.6118916273117065e-01 -1.3568730652332306e-01</leafValues></_>
<_>
<internalNodes>
0 -1 50 5.5216532928170636e-06</internalNodes>
<leafValues>
-2.5533819198608398e-01 5.2754181623458862e-01</leafValues></_>
<_>
<internalNodes>
0 -1 47 -1.9973884336650372e-03</internalNodes>
<leafValues>
6.6466706991195679e-01 -2.2477179765701294e-01</leafValues></_>
<_>
<internalNodes>
0 -1 28 -2.0415836843312718e-06</internalNodes>
<leafValues>
4.1443213820457458e-01 -3.4044399857521057e-01</leafValues></_>
<_>
<internalNodes>
0 -1 12 3.7563326768577099e-03</internalNodes>
<leafValues>
-2.1847841143608093e-01 6.3545787334442139e-01</leafValues></_>
<_>
<internalNodes>
0 -1 15 7.9007381573319435e-03</internalNodes>
<leafValues>
1.6216482222080231e-01 -9.1371542215347290e-01</leafValues></_>
<_>
<internalNodes>
0 -1 10 3.9811241440474987e-03</internalNodes>
<leafValues>
-1.9744773209095001e-01 7.6450639963150024e-01</leafValues></_>
<_>
<internalNodes>
0 -1 29 -1.7096828059948166e-06</internalNodes>
<leafValues>
3.9144572615623474e-01 -3.6310148239135742e-01</leafValues></_></weakClassifiers></_>
<!-- stage 3 -->
<_>
<maxWeakCount>11</maxWeakCount>
<stageThreshold>-9.0464282035827637e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 24 1.2959747109562159e-03</internalNodes>
<leafValues>
4.6429726481437683e-01 -8.0845069885253906e-01</leafValues></_>
<_>
<internalNodes>
0 -1 34 -2.8733364306390285e-03</internalNodes>
<leafValues>
-9.6789997816085815e-01 2.1198263764381409e-01</leafValues></_>
<_>
<internalNodes>
0 -1 9 -1.3397727161645889e-02</internalNodes>
<leafValues>
5.6934660673141479e-01 -3.0821526050567627e-01</leafValues></_>
<_>
<internalNodes>
0 -1 22 -1.1781489476561546e-02</internalNodes>
<leafValues>
-8.4862869977951050e-01 1.4762622117996216e-01</leafValues></_>
<_>
<internalNodes>
0 -1 49 1.2519654119387269e-03</internalNodes>
<leafValues>
-2.0054864883422852e-01 6.3919824361801147e-01</leafValues></_>
<_>
<internalNodes>
0 -1 48 -1.5216225292533636e-03</internalNodes>
<leafValues>
7.0074671506881714e-01 -2.0827311277389526e-01</leafValues></_>
<_>
<internalNodes>
0 -1 26 4.3898764997720718e-03</internalNodes>
<leafValues>
1.6893081367015839e-01 -8.1222736835479736e-01</leafValues></_>
<_>
<internalNodes>
0 -1 45 -3.0941981822252274e-04</internalNodes>
<leafValues>
5.7097512483596802e-01 -2.5153324007987976e-01</leafValues></_>
<_>
<internalNodes>
0 -1 31 -2.7150831556355115e-06</internalNodes>
<leafValues>
2.8719341754913330e-01 -4.1912129521369934e-01</leafValues></_>
<_>
<internalNodes>
0 -1 36 4.1995495557785034e-03</internalNodes>
<leafValues>
-1.7911048233509064e-01 7.0192998647689819e-01</leafValues></_>
<_>
<internalNodes>
0 -1 42 -3.5545839928090572e-03</internalNodes>
<leafValues>
5.8740717172622681e-01 -2.3055998980998993e-01</leafValues></_></weakClassifiers></_>
<!-- stage 4 -->
<_>
<maxWeakCount>15</maxWeakCount>
<stageThreshold>-8.5486489534378052e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 1 3.3321935916319489e-04</internalNodes>
<leafValues>
4.6104926615953445e-02 6.8010234832763672e-01</leafValues></_>
<_>
<internalNodes>
0 -1 37 -7.1818078868091106e-03</internalNodes>
<leafValues>
4.9715125560760498e-01 -1.9445896148681641e-01</leafValues></_>
<_>
<internalNodes>
0 -1 43 6.2216846272349358e-03</internalNodes>
<leafValues>
-1.6811747848987579e-01 6.8683779239654541e-01</leafValues></_>
<_>
<internalNodes>
0 -1 40 -7.3284306563436985e-04</internalNodes>
<leafValues>
5.2426153421401978e-01 -2.5609695911407471e-01</leafValues></_>
<_>
<internalNodes>
0 -1 25 -2.2718154468748253e-06</internalNodes>
<leafValues>
4.2472925782203674e-01 -2.3655317723751068e-01</leafValues></_>
<_>
<internalNodes>
0 -1 16 1.0366343194618821e-03</internalNodes>
<leafValues>
-1.5082004666328430e-01 6.6443657875061035e-01</leafValues></_>
<_>
<internalNodes>
0 -1 17 -1.1269531678408384e-03</internalNodes>
<leafValues>
6.1404794454574585e-01 -1.9812883436679840e-01</leafValues></_>
<_>
<internalNodes>
0 -1 19 -4.4472012668848038e-03</internalNodes>
<leafValues>
-9.4519412517547607e-01 1.4518475532531738e-01</leafValues></_>
<_>
<internalNodes>
0 -1 35 -2.9208836167526897e-06</internalNodes>
<leafValues>
2.9716390371322632e-01 -4.0428817272186279e-01</leafValues></_>
<_>
<internalNodes>
0 -1 7 9.1482640709728003e-04</internalNodes>
<leafValues>
-1.6211530566215515e-01 6.5503817796707153e-01</leafValues></_>
<_>
<internalNodes>
0 -1 14 3.2920246012508869e-03</internalNodes>
<leafValues>
1.2268939614295959e-01 -9.5589977502822876e-01</leafValues></_>
<_>
<internalNodes>
0 -1 20 9.6079264767467976e-04</internalNodes>
<leafValues>
-1.8024173378944397e-01 6.8493902683258057e-01</leafValues></_>
<_>
<internalNodes>
0 -1 21 -8.7588094174861908e-04</internalNodes>
<leafValues>
-6.6833299398422241e-01 1.9627135992050171e-01</leafValues></_>
<_>
<internalNodes>
0 -1 8 6.7420175764709711e-04</internalNodes>
<leafValues>
-1.6949023306369781e-01 7.1906769275665283e-01</leafValues></_>
<_>
<internalNodes>
0 -1 32 -1.3050434645265341e-03</internalNodes>
<leafValues>
4.2665791511535645e-01 -2.6496207714080811e-01</leafValues></_></weakClassifiers></_></stages>
<features>
<_>
<rects>
<_>
0 0 60 60 -1.</_>
<_>
0 30 60 30 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 6 3 48 -1.</_>
<_>
1 6 1 48 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 23 8 17 -1.</_>
<_>
4 23 4 17 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 25 20 12 -1.</_>
<_>
5 25 10 12 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 26 8 11 -1.</_>
<_>
5 26 4 11 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 27 16 10 -1.</_>
<_>
5 27 8 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 23 12 19 -1.</_>
<_>
6 23 4 19 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 41 10 4 -1.</_>
<_>
4 42 10 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
6 37 7 3 -1.</_>
<_>
5 38 7 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
8 35 19 6 -1.</_>
<_>
8 35 19 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
8 38 7 8 -1.</_>
<_>
6 40 7 4 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
9 8 6 8 -1.</_>
<_>
11 10 2 8 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
11 3 9 9 -1.</_>
<_>
14 6 3 9 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
14 21 37 39 -1.</_>
<_>
14 34 37 13 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
18 24 18 5 -1.</_>
<_>
24 24 6 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
18 25 18 12 -1.</_>
<_>
24 29 6 4 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 5 3 17 -1.</_>
<_>
20 6 1 17 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
19 5 4 18 -1.</_>
<_>
20 6 2 18 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
19 29 12 16 -1.</_>
<_>
15 33 12 8 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
20 22 22 14 -1.</_>
<_>
20 22 11 7 2.</_>
<_>
31 29 11 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
21 5 3 18 -1.</_>
<_>
22 6 1 18 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
24 20 12 4 -1.</_>
<_>
28 24 4 4 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
26 23 12 21 -1.</_>
<_>
30 30 4 7 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
26 28 2 2 -1.</_>
<_>
26 29 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
27 20 15 1 -1.</_>
<_>
32 25 5 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
28 30 2 2 -1.</_>
<_>
28 30 1 1 2.</_>
<_>
29 31 1 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
29 24 9 15 -1.</_>
<_>
32 29 3 5 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
29 30 2 2 -1.</_>
<_>
29 31 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
30 35 2 2 -1.</_>
<_>
30 36 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
31 32 2 2 -1.</_>
<_>
31 33 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
31 34 4 2 -1.</_>
<_>
31 35 4 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
31 34 6 2 -1.</_>
<_>
31 35 6 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
31 37 1 21 -1.</_>
<_>
24 44 1 7 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
32 30 2 1 -1.</_>
<_>
32 30 1 1 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
34 23 10 5 -1.</_>
<_>
34 23 5 5 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
38 28 3 2 -1.</_>
<_>
38 29 3 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
41 3 19 6 -1.</_>
<_>
39 5 19 2 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
43 16 16 30 -1.</_>
<_>
47 16 8 30 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
44 21 16 25 -1.</_>
<_>
48 21 8 25 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
47 7 10 6 -1.</_>
<_>
45 9 10 2 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
47 16 10 6 -1.</_>
<_>
47 16 5 3 2.</_>
<_>
52 19 5 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
48 4 12 6 -1.</_>
<_>
46 6 12 2 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
49 9 8 9 -1.</_>
<_>
46 12 8 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
50 9 10 9 -1.</_>
<_>
47 12 10 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
51 6 9 6 -1.</_>
<_>
49 8 9 2 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
51 25 9 1 -1.</_>
<_>
54 25 3 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
52 17 8 28 -1.</_>
<_>
56 17 4 28 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
54 11 6 20 -1.</_>
<_>
54 11 3 10 2.</_>
<_>
57 21 3 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
56 14 4 20 -1.</_>
<_>
56 14 2 10 2.</_>
<_>
58 24 2 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
56 18 4 18 -1.</_>
<_>
56 18 2 9 2.</_>
<_>
58 27 2 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
56 32 2 1 -1.</_>
<_>
57 32 1 1 2.</_></rects>
<tilted>0</tilted></_></features></cascade>
</opencv_storage>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff