/* */ #include "rt_config.h" /* IEEE 802.11AC D2.0 sec 22.3.14 Channelization, Table 22-21 A VHT channel is specified by the four PLME MIB fields (Fields to specify VHT channels). dot11CurrentChannelBandwidth: Channel bandwidth. Possible values are cbw20, cbw40, cbw80, cbw160 and cbw80p80. dot11CurrentChannelCenterFrequencyIndex1: In 20 MHz, 40 MHz, 80 MHz and 160 MHz channels, denotes the channel center frequency. In 80+80 MHz channels, denotes the center frequency of the frequency segment 1, which is the frequency segment containing the primary channel.. Valid range = 1, ¡K, 200. dot11CurrentChannelCenterFrequencyIndex2: In 80+80 MHz channels, denotes the center frequency of the frequency segment 2, which is the frequency segment that does not contain the primary channel. Valid range = 1, ¡K, 200. Undefined for 20 MHz, 40 MHz, 80 MHz and 160 MHz channels. dot11CurrentPrimaryChannel: Denotes the location of the primary 20 MHz channel. Valid range = 1, ¡K, 200. Formula: A channel center frequency of 5.000 GHz shall be indicated by dot11ChannelStartingFactor = 8000, and dot11CurrentPrimaryChannel = 200. Channel starting frequency = dot11ChannelStartingFactor ¡Ñ 0500 kHz. Channel center frequency [MHz] = Channel starting frequency + 5 * dot11CurrentChannelCenterFrequencyIndex Primary 20 MHz channel center frequency [MHz] = Channel starting frequency + 5 * dot11CurrentPrimaryChannel ex: a channel specified by: dot11CurrentChannelBandwidth = 80 MHz dot11CurrentChannelCenterFrequencyIndex1 = 42 dot11CurrentPrimaryChannel = 36 =>is an 80 MHz channel with a center frequency of 5210 MHz and the primary 20 MHz channel centered at 5180 MHz. */ struct vht_ch_layout{ UCHAR ch_low_bnd; UCHAR ch_up_bnd; UCHAR cent_freq_idx; }; static struct vht_ch_layout vht_ch_80M[]={ {36, 48, 42}, {52, 64, 58}, {100,112, 106}, {116, 128, 122}, {132, 144, 138}, {149, 161, 155}, {0, 0 ,0}, }; VOID dump_vht_cap(RTMP_ADAPTER *pAd, VHT_CAP_IE *vht_ie) { VHT_CAP_INFO *vht_cap = &vht_ie->vht_cap; VHT_MCS_SET *vht_mcs = &vht_ie->mcs_set; DBGPRINT(RT_DEBUG_OFF, ("Dump VHT_CAP IE\n")); hex_dump("VHT CAP IE Raw Data", (UCHAR *)vht_ie, sizeof(VHT_CAP_IE)); DBGPRINT(RT_DEBUG_OFF, ("VHT Capabilities Info Field\n")); DBGPRINT(RT_DEBUG_OFF, ("\tMaximum MPDU Length=%d\n", vht_cap->max_mpdu_len)); DBGPRINT(RT_DEBUG_OFF, ("\tSupported Channel Width=%d\n", vht_cap->ch_width)); DBGPRINT(RT_DEBUG_OFF, ("\tRxLDPC=%d\n", vht_cap->rx_ldpc)); DBGPRINT(RT_DEBUG_OFF, ("\tShortGI_80M=%d\n", vht_cap->sgi_80M)); DBGPRINT(RT_DEBUG_OFF, ("\tShortGI_160M=%d\n", vht_cap->sgi_160M)); DBGPRINT(RT_DEBUG_OFF, ("\tTxSTBC=%d\n", vht_cap->tx_stbc)); DBGPRINT(RT_DEBUG_OFF, ("\tRxSTBC=%d\n", vht_cap->rx_stbc)); DBGPRINT(RT_DEBUG_OFF, ("\tSU BeamformerCap=%d\n", vht_cap->bfer_cap_su)); DBGPRINT(RT_DEBUG_OFF, ("\tSU BeamformeeCap=%d\n", vht_cap->bfee_cap_su)); DBGPRINT(RT_DEBUG_OFF, ("\tCompressedSteeringNumOfBeamformerAnt=%d\n", vht_cap->cmp_st_num_bfer)); DBGPRINT(RT_DEBUG_OFF, ("\tNumber of Sounding Dimensions=%d\n", vht_cap->num_snd_dimension)); DBGPRINT(RT_DEBUG_OFF, ("\tMU BeamformerCap=%d\n", vht_cap->bfer_cap_mu)); DBGPRINT(RT_DEBUG_OFF, ("\tMU BeamformeeCap=%d\n", vht_cap->bfee_cap_mu)); DBGPRINT(RT_DEBUG_OFF, ("\tVHT TXOP PS=%d\n", vht_cap->vht_txop_ps)); DBGPRINT(RT_DEBUG_OFF, ("\t+HTC-VHT Capable=%d\n", vht_cap->htc_vht_cap)); DBGPRINT(RT_DEBUG_OFF, ("\tMaximum A-MPDU Length Exponent=%d\n", vht_cap->max_ampdu_exp)); DBGPRINT(RT_DEBUG_OFF, ("\tVHT LinkAdaptation Capable=%d\n", vht_cap->vht_link_adapt)); DBGPRINT(RT_DEBUG_OFF, ("VHT Supported MCS Set Field\n")); DBGPRINT(RT_DEBUG_OFF, ("\tRx Highest SupDataRate=%d\n", vht_mcs->rx_high_rate)); DBGPRINT(RT_DEBUG_OFF, ("\tRxMCS Map_1SS=%d\n", vht_mcs->rx_mcs_map.mcs_ss1)); DBGPRINT(RT_DEBUG_OFF, ("\tRxMCS Map_2SS=%d\n", vht_mcs->rx_mcs_map.mcs_ss2)); DBGPRINT(RT_DEBUG_OFF, ("\tTx Highest SupDataRate=%d\n", vht_mcs->tx_high_rate)); DBGPRINT(RT_DEBUG_OFF, ("\tTxMCS Map_1SS=%d\n", vht_mcs->tx_mcs_map.mcs_ss1)); DBGPRINT(RT_DEBUG_OFF, ("\tTxMCS Map_2SS=%d\n", vht_mcs->tx_mcs_map.mcs_ss2)); } VOID dump_vht_op(RTMP_ADAPTER *pAd, VHT_OP_IE *vht_ie) { VHT_OP_INFO *vht_op = &vht_ie->vht_op_info; VHT_MCS_MAP *vht_mcs = &vht_ie->basic_mcs_set; DBGPRINT(RT_DEBUG_OFF, ("Dump VHT_OP IE\n")); hex_dump("VHT OP IE Raw Data", (UCHAR *)vht_ie, sizeof(VHT_OP_IE)); DBGPRINT(RT_DEBUG_OFF, ("VHT Operation Info Field\n")); DBGPRINT(RT_DEBUG_OFF, ("\tChannelWidth=%d\n", vht_op->ch_width)); DBGPRINT(RT_DEBUG_OFF, ("\tChannelCenterFrequency Seg 1=%d\n", vht_op->center_freq_1)); DBGPRINT(RT_DEBUG_OFF, ("\tChannelCenterFrequency Seg 1=%d\n", vht_op->center_freq_2)); DBGPRINT(RT_DEBUG_OFF, ("VHT Basic MCS Set Field\n")); DBGPRINT(RT_DEBUG_OFF, ("\tRxMCS Map_1SS=%d\n", vht_mcs->mcs_ss1)); DBGPRINT(RT_DEBUG_OFF, ("\tRxMCS Map_2SS=%d\n", vht_mcs->mcs_ss2)); } /* Currently we only consider about VHT 80MHz! */ UCHAR vht_cent_ch_freq(RTMP_ADAPTER *pAd, UCHAR prim_ch) { INT idx = 0; if (pAd->CommonCfg.vht_bw < VHT_BW_80 || prim_ch < 36) { pAd->CommonCfg.vht_cent_ch = 0; pAd->CommonCfg.vht_cent_ch2 = 0; return prim_ch; } while (vht_ch_80M[idx].ch_up_bnd != 0) { if (prim_ch >= vht_ch_80M[idx].ch_low_bnd && prim_ch <= vht_ch_80M[idx].ch_up_bnd) { pAd->CommonCfg.vht_cent_ch = vht_ch_80M[idx].cent_freq_idx; return vht_ch_80M[idx].cent_freq_idx; } idx++; } return prim_ch; } INT vht_mode_adjust(RTMP_ADAPTER *pAd, MAC_TABLE_ENTRY *pEntry, VHT_CAP_IE *cap, VHT_OP_IE *op) { pEntry->MaxHTPhyMode.field.MODE = MODE_VHT; pAd->CommonCfg.AddHTInfo.AddHtInfo2.NonGfPresent = 1; pAd->MacTab.fAnyStationNonGF = TRUE; if (op->vht_op_info.ch_width >= 1 && pEntry->MaxHTPhyMode.field.BW == BW_40) { pEntry->MaxHTPhyMode.field.BW= BW_80; pEntry->MaxHTPhyMode.field.ShortGI = (cap->vht_cap.sgi_80M); pEntry->MaxHTPhyMode.field.STBC = (cap->vht_cap.rx_stbc > 1 ? 1 : 0); } return TRUE; } INT get_vht_op_ch_width(RTMP_ADAPTER *pAd) { return TRUE; } /******************************************************************** Procedures for 802.11 AC Information elements ********************************************************************/ /* Defined in IEEE 802.11AC Appeared in Beacon, ProbResp frames */ INT build_quiet_channel(RTMP_ADAPTER *pAd, UCHAR *buf) { INT len = 0; return len; } /* Defined in IEEE 802.11AC Appeared in Beacon, ProbResp frames */ INT build_ext_bss_load(RTMP_ADAPTER *pAd, UCHAR *buf) { INT len = 0; return len; } /* Defined in IEEE 802.11AC Appeared in Beacon, ProbResp frames */ INT build_ext_pwr_constraint(RTMP_ADAPTER *pAd, UCHAR *buf) { INT len = 0; return len; } /* Defined in IEEE 802.11AC Appeared in Beacon, ProbResp frames */ INT build_vht_pwr_envelope(RTMP_ADAPTER *pAd, UCHAR *buf) { INT len = 0; return len; } /* Defined in IEEE 802.11AC Appeared in Beacon, (Re)AssocResp, ProbResp frames */ INT build_vht_op_ie(RTMP_ADAPTER *pAd, UCHAR *buf) { VHT_OP_IE vht_op; NdisZeroMemory((UCHAR *)&vht_op, sizeof(VHT_OP_IE)); vht_op.vht_op_info.ch_width = (pAd->CommonCfg.vht_bw == VHT_BW_80 ? 1: 0); switch (vht_op.vht_op_info.ch_width) { case 0: vht_op.vht_op_info.center_freq_1 = 0; vht_op.vht_op_info.center_freq_2 = 0; break; case 1: case 2: vht_op.vht_op_info.center_freq_1 = pAd->CommonCfg.vht_cent_ch; vht_op.vht_op_info.center_freq_2 = 0; break; case 3: vht_op.vht_op_info.center_freq_1 = pAd->CommonCfg.vht_cent_ch; vht_op.vht_op_info.center_freq_2 = pAd->CommonCfg.vht_cent_ch2; break; } vht_op.basic_mcs_set.mcs_ss1 = 3; vht_op.basic_mcs_set.mcs_ss2 = 3; vht_op.basic_mcs_set.mcs_ss3 = 3; vht_op.basic_mcs_set.mcs_ss4 = 3; vht_op.basic_mcs_set.mcs_ss5 = 3; vht_op.basic_mcs_set.mcs_ss6 = 3; vht_op.basic_mcs_set.mcs_ss7 = 3; vht_op.basic_mcs_set.mcs_ss8 = 3; switch (pAd->CommonCfg.RxStream) { case 2: vht_op.basic_mcs_set.mcs_ss2 = 0; case 1: vht_op.basic_mcs_set.mcs_ss1 = 0; break; } NdisMoveMemory((UCHAR *)buf, (UCHAR *)&vht_op, sizeof(VHT_OP_IE)); return sizeof(VHT_OP_IE); } /* Defined in IEEE 802.11AC Appeared in Beacon, (Re)AssocReq, (Re)AssocResp, ProbReq/Resp frames */ INT build_vht_cap_ie(RTMP_ADAPTER *pAd, UCHAR *buf) { VHT_CAP_IE vht_cap_ie; NdisZeroMemory((UCHAR *)&vht_cap_ie, sizeof(VHT_CAP_IE)); vht_cap_ie.vht_cap.max_mpdu_len = 0; // TODO: Ask Jerry about hardware limitation. vht_cap_ie.vht_cap.ch_width = 0; /* not support 160 or 80 + 80 MHz */ vht_cap_ie.vht_cap.sgi_80M = 1; vht_cap_ie.vht_cap.htc_vht_cap = 1; vht_cap_ie.vht_cap.max_ampdu_exp = 3; // TODO: Ask Jerry about the hardware limitation, currently set as 64K vht_cap_ie.vht_cap.tx_stbc = 1; vht_cap_ie.vht_cap.rx_stbc = 2; // TODO: is it depends on the number of our antennas? vht_cap_ie.vht_cap.tx_ant_consistency = 1; vht_cap_ie.vht_cap.rx_ant_consistency = 1; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss1 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss2 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss3 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss4 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss5 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss6 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss7 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss8 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss1 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss2 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss3 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss4 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss5 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss6 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss7 = VHT_MCS_CAP_NA; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss8 = VHT_MCS_CAP_NA; switch (pAd->CommonCfg.RxStream) { case 1: vht_cap_ie.mcs_set.rx_high_rate = 292; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss1 = VHT_MCS_CAP_7; break; case 2: vht_cap_ie.mcs_set.rx_high_rate = 585; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss1 = VHT_MCS_CAP_7; vht_cap_ie.mcs_set.rx_mcs_map.mcs_ss2 = VHT_MCS_CAP_7; break; default: vht_cap_ie.mcs_set.rx_high_rate = 0; break; } switch (pAd->CommonCfg.TxStream) { case 1: vht_cap_ie.mcs_set.tx_high_rate = 292; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss1 = VHT_MCS_CAP_7; break; case 2: vht_cap_ie.mcs_set.tx_high_rate = 585; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss1 = VHT_MCS_CAP_7; vht_cap_ie.mcs_set.tx_mcs_map.mcs_ss2 = VHT_MCS_CAP_7; break; default: vht_cap_ie.mcs_set.tx_high_rate = 0; break; } NdisMoveMemory(buf, (UCHAR *)&vht_cap_ie, sizeof(VHT_CAP_IE)); return sizeof(VHT_CAP_IE); } INT build_vht_ies(RTMP_ADAPTER *pAd, UCHAR *buf, UCHAR frm) { INT len = 0; EID_STRUCT eid_hdr; eid_hdr.Eid = IE_VHT_CAP; eid_hdr.Len = sizeof(VHT_CAP_IE); NdisMoveMemory(buf, (UCHAR *)&eid_hdr, 2); len = 2; len += build_vht_cap_ie(pAd, (UCHAR *)(buf + len)); if (frm == SUBTYPE_BEACON || frm == SUBTYPE_PROBE_RSP || frm == SUBTYPE_ASSOC_RSP || frm == SUBTYPE_REASSOC_RSP) { eid_hdr.Eid = IE_VHT_OP; eid_hdr.Len = sizeof(VHT_OP_IE); NdisMoveMemory((UCHAR *)(buf + len), (UCHAR *)&eid_hdr, 2); len +=2; len += build_vht_op_ie(pAd, (UCHAR *)(buf + len)); } return len; }