//////////////////////////////////////////////////////////////////////////// // // This file is part of RTIMULib-Teensy // // Copyright (c) 2014-2015, richards-tech // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the // Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include "RTFusion.h" #include "RTIMUHal.h" // The slerp power valule controls the influence of the measured state to correct the predicted state // 0 = measured state ignored (just gyros), 1 = measured state overrides predicted state. // In between 0 and 1 mixes the two conditions #define RTQF_SLERP_POWER (RTFLOAT)0.02; const char *RTFusion::m_fusionNameMap[] = { "NULL", "Kalman STATE4", "RTQF"}; RTFusion::RTFusion() { m_debug = false; m_firstTime = true; m_enableGyro = true; m_enableAccel = true; m_enableCompass = true; m_gravity.setScalar(0); m_gravity.setX(0); m_gravity.setY(0); m_gravity.setZ(1); m_slerpPower = RTQF_SLERP_POWER; } RTFusion::~RTFusion() { } void RTFusion::calculatePose(const RTVector3& accel, const RTVector3& mag, float magDeclination) { RTQuaternion m; RTQuaternion q; if (m_enableAccel) { accel.accelToEuler(m_measuredPose); } else { m_measuredPose = m_fusionPose; m_measuredPose.setZ(0); } if (m_enableCompass && m_compassValid) { q.fromEuler(m_measuredPose); m.setScalar(0); m.setX(mag.x()); m.setY(mag.y()); m.setZ(mag.z()); m = q * m * q.conjugate(); m_measuredPose.setZ(-atan2(m.y(), m.x()) - magDeclination); } else { m_measuredPose.setZ(m_fusionPose.z()); } m_measuredQPose.fromEuler(m_measuredPose); // check for quaternion aliasing. If the quaternion has the wrong sign // the kalman filter will be very unhappy. int maxIndex = -1; RTFLOAT maxVal = -1000; for (int i = 0; i < 4; i++) { if (fabs(m_measuredQPose.data(i)) > maxVal) { maxVal = fabs(m_measuredQPose.data(i)); maxIndex = i; } } // if the biggest component has a different sign in the measured and kalman poses, // change the sign of the measured pose to match. if (((m_measuredQPose.data(maxIndex) < 0) && (m_fusionQPose.data(maxIndex) > 0)) || ((m_measuredQPose.data(maxIndex) > 0) && (m_fusionQPose.data(maxIndex) < 0))) { m_measuredQPose.setScalar(-m_measuredQPose.scalar()); m_measuredQPose.setX(-m_measuredQPose.x()); m_measuredQPose.setY(-m_measuredQPose.y()); m_measuredQPose.setZ(-m_measuredQPose.z()); m_measuredQPose.toEuler(m_measuredPose); } } RTVector3 RTFusion::getAccelResiduals() { RTQuaternion rotatedGravity; RTQuaternion fusedConjugate; RTQuaternion qTemp; RTVector3 residuals; // do gravity rotation and subtraction // create the conjugate of the pose fusedConjugate = m_fusionQPose.conjugate(); // now do the rotation - takes two steps with qTemp as the intermediate variable qTemp = m_gravity * m_fusionQPose; rotatedGravity = fusedConjugate * qTemp; // now adjust the measured accel and change the signs to make sense residuals.setX(-(m_accel.x() - rotatedGravity.x())); residuals.setY(-(m_accel.y() - rotatedGravity.y())); residuals.setZ(-(m_accel.z() - rotatedGravity.z())); return residuals; }