//////////////////////////////////////////////////////////////////////////// // // This file is part of RTIMULib // // Copyright (c) 2014-2015, richards-tech // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the // Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include "RTIMULSM9DS0.h" #include "RTIMUSettings.h" // this sets the learning rate for compass running average calculation #define COMPASS_ALPHA 0.2f RTIMULSM9DS0::RTIMULSM9DS0(RTIMUSettings *settings) : RTIMU(settings) { m_sampleRate = 100; } RTIMULSM9DS0::~RTIMULSM9DS0() { } bool RTIMULSM9DS0::IMUInit() { unsigned char result; #ifdef LSM9DS0_CACHE_MODE m_firstTime = true; m_cacheIn = m_cacheOut = m_cacheCount = 0; #endif // set validity flags m_imuData.fusionPoseValid = false; m_imuData.fusionQPoseValid = false; m_imuData.gyroValid = true; m_imuData.accelValid = true; m_imuData.compassValid = true; m_imuData.pressureValid = false; m_imuData.temperatureValid = false; m_imuData.humidityValid = false; // configure IMU m_gyroSlaveAddr = m_settings->m_I2CSlaveAddress; // work out accelmag address if (m_settings->HALRead(LSM9DS0_ACCELMAG_ADDRESS0, LSM9DS0_WHO_AM_I, 1, &result, "")) { if (result == LSM9DS0_ACCELMAG_ID) { m_accelCompassSlaveAddr = LSM9DS0_ACCELMAG_ADDRESS0; } } else { m_accelCompassSlaveAddr = LSM9DS0_ACCELMAG_ADDRESS1; } setCalibrationData(); // enable the I2C bus if (!m_settings->HALOpen()) return false; // Set up the gyro if (!m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_CTRL5, 0x80, "Failed to boot LSM9DS0")) return false; if (!m_settings->HALRead(m_gyroSlaveAddr, LSM9DS0_GYRO_WHO_AM_I, 1, &result, "Failed to read LSM9DS0 gyro id")) return false; if (result != LSM9DS0_GYRO_ID) { HAL_ERROR1("Incorrect LSM9DS0 gyro id %d\n", result); return false; } if (!setGyroSampleRate()) return false; if (!setGyroCTRL2()) return false; if (!setGyroCTRL4()) return false; // Set up the accel if (!m_settings->HALRead(m_accelCompassSlaveAddr, LSM9DS0_WHO_AM_I, 1, &result, "Failed to read LSM9DS0 accel/mag id")) return false; if (result != LSM9DS0_ACCELMAG_ID) { HAL_ERROR1("Incorrect LSM9DS0 accel/mag id %d\n", result); return false; } if (!setAccelCTRL1()) return false; if (!setAccelCTRL2()) return false; if (!setCompassCTRL5()) return false; if (!setCompassCTRL6()) return false; if (!setCompassCTRL7()) return false; #ifdef LSM9DS0_CACHE_MODE // turn on gyro fifo if (!m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_FIFO_CTRL, 0x3f, "Failed to set LSM9DS0 FIFO mode")) return false; #endif if (!setGyroCTRL5()) return false; gyroBiasInit(); HAL_INFO("LSM9DS0 init complete\n"); return true; } bool RTIMULSM9DS0::setGyroSampleRate() { unsigned char ctrl1; switch (m_settings->m_LSM9DS0GyroSampleRate) { case LSM9DS0_GYRO_SAMPLERATE_95: ctrl1 = 0x0f; m_sampleRate = 95; break; case LSM9DS0_GYRO_SAMPLERATE_190: ctrl1 = 0x4f; m_sampleRate = 190; break; case LSM9DS0_GYRO_SAMPLERATE_380: ctrl1 = 0x8f; m_sampleRate = 380; break; case LSM9DS0_GYRO_SAMPLERATE_760: ctrl1 = 0xcf; m_sampleRate = 760; break; default: HAL_ERROR1("Illegal LSM9DS0 gyro sample rate code %d\n", m_settings->m_LSM9DS0GyroSampleRate); return false; } m_sampleInterval = (uint64_t)1000000 / m_sampleRate; switch (m_settings->m_LSM9DS0GyroBW) { case LSM9DS0_GYRO_BANDWIDTH_0: ctrl1 |= 0x00; break; case LSM9DS0_GYRO_BANDWIDTH_1: ctrl1 |= 0x10; break; case LSM9DS0_GYRO_BANDWIDTH_2: ctrl1 |= 0x20; break; case LSM9DS0_GYRO_BANDWIDTH_3: ctrl1 |= 0x30; break; } return (m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_CTRL1, ctrl1, "Failed to set LSM9DS0 gyro CTRL1")); } bool RTIMULSM9DS0::setGyroCTRL2() { if ((m_settings->m_LSM9DS0GyroHpf < LSM9DS0_GYRO_HPF_0) || (m_settings->m_LSM9DS0GyroHpf > LSM9DS0_GYRO_HPF_9)) { HAL_ERROR1("Illegal LSM9DS0 gyro high pass filter code %d\n", m_settings->m_LSM9DS0GyroHpf); return false; } return m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_CTRL2, m_settings->m_LSM9DS0GyroHpf, "Failed to set LSM9DS0 gyro CTRL2"); } bool RTIMULSM9DS0::setGyroCTRL4() { unsigned char ctrl4; switch (m_settings->m_LSM9DS0GyroFsr) { case LSM9DS0_GYRO_FSR_250: ctrl4 = 0x00; m_gyroScale = (RTFLOAT)0.00875 * RTMATH_DEGREE_TO_RAD; break; case LSM9DS0_GYRO_FSR_500: ctrl4 = 0x10; m_gyroScale = (RTFLOAT)0.0175 * RTMATH_DEGREE_TO_RAD; break; case LSM9DS0_GYRO_FSR_2000: ctrl4 = 0x20; m_gyroScale = (RTFLOAT)0.07 * RTMATH_DEGREE_TO_RAD; break; default: HAL_ERROR1("Illegal LSM9DS0 gyro FSR code %d\n", m_settings->m_LSM9DS0GyroFsr); return false; } return m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_CTRL4, ctrl4, "Failed to set LSM9DS0 gyro CTRL4"); } bool RTIMULSM9DS0::setGyroCTRL5() { unsigned char ctrl5; // Turn on hpf ctrl5 = 0x10; #ifdef LSM9DS0_CACHE_MODE // turn on fifo ctrl5 |= 0x40; #endif return m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_CTRL5, ctrl5, "Failed to set LSM9DS0 gyro CTRL5"); } bool RTIMULSM9DS0::setAccelCTRL1() { unsigned char ctrl1; if ((m_settings->m_LSM9DS0AccelSampleRate < 0) || (m_settings->m_LSM9DS0AccelSampleRate > 10)) { HAL_ERROR1("Illegal LSM9DS0 accel sample rate code %d\n", m_settings->m_LSM9DS0AccelSampleRate); return false; } ctrl1 = (m_settings->m_LSM9DS0AccelSampleRate << 4) | 0x07; return m_settings->HALWrite(m_accelCompassSlaveAddr, LSM9DS0_CTRL1, ctrl1, "Failed to set LSM9DS0 accell CTRL1"); } bool RTIMULSM9DS0::setAccelCTRL2() { unsigned char ctrl2; if ((m_settings->m_LSM9DS0AccelLpf < 0) || (m_settings->m_LSM9DS0AccelLpf > 3)) { HAL_ERROR1("Illegal LSM9DS0 accel low pass fiter code %d\n", m_settings->m_LSM9DS0AccelLpf); return false; } switch (m_settings->m_LSM9DS0AccelFsr) { case LSM9DS0_ACCEL_FSR_2: m_accelScale = (RTFLOAT)0.000061; break; case LSM9DS0_ACCEL_FSR_4: m_accelScale = (RTFLOAT)0.000122; break; case LSM9DS0_ACCEL_FSR_6: m_accelScale = (RTFLOAT)0.000183; break; case LSM9DS0_ACCEL_FSR_8: m_accelScale = (RTFLOAT)0.000244; break; case LSM9DS0_ACCEL_FSR_16: m_accelScale = (RTFLOAT)0.000732; break; default: HAL_ERROR1("Illegal LSM9DS0 accel FSR code %d\n", m_settings->m_LSM9DS0AccelFsr); return false; } ctrl2 = (m_settings->m_LSM9DS0AccelLpf << 6) | (m_settings->m_LSM9DS0AccelFsr << 3); return m_settings->HALWrite(m_accelCompassSlaveAddr, LSM9DS0_CTRL2, ctrl2, "Failed to set LSM9DS0 accel CTRL2"); } bool RTIMULSM9DS0::setCompassCTRL5() { unsigned char ctrl5; if ((m_settings->m_LSM9DS0CompassSampleRate < 0) || (m_settings->m_LSM9DS0CompassSampleRate > 5)) { HAL_ERROR1("Illegal LSM9DS0 compass sample rate code %d\n", m_settings->m_LSM9DS0CompassSampleRate); return false; } ctrl5 = (m_settings->m_LSM9DS0CompassSampleRate << 2); #ifdef LSM9DS0_CACHE_MODE // enable fifo ctrl5 |= 0x40; #endif return m_settings->HALWrite(m_accelCompassSlaveAddr, LSM9DS0_CTRL5, ctrl5, "Failed to set LSM9DS0 compass CTRL5"); } bool RTIMULSM9DS0::setCompassCTRL6() { unsigned char ctrl6; // convert FSR to uT switch (m_settings->m_LSM9DS0CompassFsr) { case LSM9DS0_COMPASS_FSR_2: ctrl6 = 0; m_compassScale = (RTFLOAT)0.008; break; case LSM9DS0_COMPASS_FSR_4: ctrl6 = 0x20; m_compassScale = (RTFLOAT)0.016; break; case LSM9DS0_COMPASS_FSR_8: ctrl6 = 0x40; m_compassScale = (RTFLOAT)0.032; break; case LSM9DS0_COMPASS_FSR_12: ctrl6 = 0x60; m_compassScale = (RTFLOAT)0.0479; break; default: HAL_ERROR1("Illegal LSM9DS0 compass FSR code %d\n", m_settings->m_LSM9DS0CompassFsr); return false; } return m_settings->HALWrite(m_accelCompassSlaveAddr, LSM9DS0_CTRL6, ctrl6, "Failed to set LSM9DS0 compass CTRL6"); } bool RTIMULSM9DS0::setCompassCTRL7() { return m_settings->HALWrite(m_accelCompassSlaveAddr, LSM9DS0_CTRL7, 0x60, "Failed to set LSM9DS0CTRL7"); } int RTIMULSM9DS0::IMUGetPollInterval() { return (400 / m_sampleRate); } bool RTIMULSM9DS0::IMURead() { unsigned char status; unsigned char gyroData[6]; unsigned char accelData[6]; unsigned char compassData[6]; #ifdef LSM9DS0_CACHE_MODE int count; if (!m_settings->HALRead(m_gyroSlaveAddr, LSM9DS0_GYRO_FIFO_SRC, 1, &status, "Failed to read LSM9DS0 gyro fifo status")) return false; if ((status & 0x40) != 0) { HAL_INFO("LSM9DS0 gyro fifo overrun\n"); if (!m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_CTRL5, 0x10, "Failed to set LSM9DS0 gyro CTRL5")) return false; if (!m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_FIFO_CTRL, 0x0, "Failed to set LSM9DS0 gyro FIFO mode")) return false; if (!m_settings->HALWrite(m_gyroSlaveAddr, LSM9DS0_GYRO_FIFO_CTRL, 0x3f, "Failed to set LSM9DS0 gyro FIFO mode")) return false; if (!setGyroCTRL5()) return false; m_imuData.timestamp += m_sampleInterval * 32; return false; } // get count of samples in fifo count = status & 0x1f; if ((m_cacheCount == 0) && (count > 0) && (count < LSM9DS0_FIFO_THRESH)) { // special case of a small fifo and nothing cached - just handle as simple read if (!m_settings->HALRead(m_gyroSlaveAddr, 0x80 | LSM9DS0_GYRO_OUT_X_L, 6, gyroData, "Failed to read LSM9DS0 gyro data")) return false; if (!m_settings->HALRead(m_accelCompassSlaveAddr, 0x80 | LSM9DS0_OUT_X_L_A, 6, accelData, "Failed to read LSM9DS0 accel data")) return false; if (!m_settings->HALRead(m_accelCompassSlaveAddr, 0x80 | LSM9DS0_OUT_X_L_M, 6, compassData, "Failed to read LSM9DS0 compass data")) return false; if (m_firstTime) m_imuData.timestamp = RTMath::currentUSecsSinceEpoch(); else m_imuData.timestamp += m_sampleInterval; m_firstTime = false; } else { if (count >= LSM9DS0_FIFO_THRESH) { // need to create a cache block if (m_cacheCount == LSM9DS0_CACHE_BLOCK_COUNT) { // all cache blocks are full - discard oldest and update timestamp to account for lost samples m_imuData.timestamp += m_sampleInterval * m_cache[m_cacheOut].count; if (++m_cacheOut == LSM9DS0_CACHE_BLOCK_COUNT) m_cacheOut = 0; m_cacheCount--; } if (!m_settings->HALRead(m_gyroSlaveAddr, 0x80 | LSM9DS0_GYRO_OUT_X_L, LSM9DS0_FIFO_CHUNK_SIZE * LSM9DS0_FIFO_THRESH, m_cache[m_cacheIn].data, "Failed to read LSM9DS0 fifo data")) return false; if (!m_settings->HALRead(m_accelCompassSlaveAddr, 0x80 | LSM9DS0_OUT_X_L_A, 6, m_cache[m_cacheIn].accel, "Failed to read LSM9DS0 accel data")) return false; if (!m_settings->HALRead(m_accelCompassSlaveAddr, 0x80 | LSM9DS0_OUT_X_L_M, 6, m_cache[m_cacheIn].compass, "Failed to read LSM9DS0 compass data")) return false; m_cache[m_cacheIn].count = LSM9DS0_FIFO_THRESH; m_cache[m_cacheIn].index = 0; m_cacheCount++; if (++m_cacheIn == LSM9DS0_CACHE_BLOCK_COUNT) m_cacheIn = 0; } // now fifo has been read if necessary, get something to process if (m_cacheCount == 0) return false; memcpy(gyroData, m_cache[m_cacheOut].data + m_cache[m_cacheOut].index, LSM9DS0_FIFO_CHUNK_SIZE); memcpy(accelData, m_cache[m_cacheOut].accel, 6); memcpy(compassData, m_cache[m_cacheOut].compass, 6); m_cache[m_cacheOut].index += LSM9DS0_FIFO_CHUNK_SIZE; if (--m_cache[m_cacheOut].count == 0) { // this cache block is now empty if (++m_cacheOut == LSM9DS0_CACHE_BLOCK_COUNT) m_cacheOut = 0; m_cacheCount--; } if (m_firstTime) m_imuData.timestamp = RTMath::currentUSecsSinceEpoch(); else m_imuData.timestamp += m_sampleInterval; m_firstTime = false; } #else if (!m_settings->HALRead(m_gyroSlaveAddr, LSM9DS0_GYRO_STATUS, 1, &status, "Failed to read LSM9DS0 status")) return false; if ((status & 0x8) == 0) return false; if (!m_settings->HALRead(m_gyroSlaveAddr, 0x80 | LSM9DS0_GYRO_OUT_X_L, 6, gyroData, "Failed to read LSM9DS0 gyro data")) return false; m_imuData.timestamp = RTMath::currentUSecsSinceEpoch(); if (!m_settings->HALRead(m_accelCompassSlaveAddr, 0x80 | LSM9DS0_OUT_X_L_A, 6, accelData, "Failed to read LSM9DS0 accel data")) return false; if (!m_settings->HALRead(m_accelCompassSlaveAddr, 0x80 | LSM9DS0_OUT_X_L_M, 6, compassData, "Failed to read LSM9DS0 compass data")) return false; #endif RTMath::convertToVector(gyroData, m_imuData.gyro, m_gyroScale, false); RTMath::convertToVector(accelData, m_imuData.accel, m_accelScale, false); RTMath::convertToVector(compassData, m_imuData.compass, m_compassScale, false); // sort out gyro axes and correct for bias m_imuData.gyro.setX(m_imuData.gyro.x()); m_imuData.gyro.setY(-m_imuData.gyro.y()); m_imuData.gyro.setZ(-m_imuData.gyro.z()); // sort out accel data; m_imuData.accel.setX(-m_imuData.accel.x()); // sort out compass axes m_imuData.compass.setY(-m_imuData.compass.y()); // now do standard processing handleGyroBias(); calibrateAverageCompass(); calibrateAccel(); // now update the filter updateFusion(); return true; }