//////////////////////////////////////////////////////////////////////////// // // This file is part of RTIMULib-Teensy // // Copyright (c) 2014-2015, richards-tech // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the // Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef _RTFUSION_H #define _RTFUSION_H #include "RTIMULibDefs.h" class RTIMUSettings; class RTFusion { public: RTFusion(); virtual ~RTFusion(); // fusionType returns the type code of the fusion algorithm virtual int fusionType() { return RTFUSION_TYPE_NULL; } // the following function can be called to set the SLERP power void setSlerpPower(RTFLOAT power) { m_slerpPower = power; } // reset() resets the fusion state but keeps any setting changes (such as enables) virtual void reset() {} // newIMUData() should be called for subsequent updates // the fusion fields are updated with the results virtual void newIMUData(RTIMU_DATA& /* data */, const RTIMUSettings * /* settings */) {} // This static function returns performs the type to name mapping static const char *fusionName(int fusionType) { return m_fusionNameMap[fusionType]; } // the following three functions control the influence of the gyro, accel and compass sensors void setGyroEnable(bool enable) { m_enableGyro = enable;} void setAccelEnable(bool enable) { m_enableAccel = enable; } void setCompassEnable(bool enable) { m_enableCompass = enable;} inline const RTVector3& getMeasuredPose() {return m_measuredPose;} inline const RTQuaternion& getMeasuredQPose() {return m_measuredQPose;} // getAccelResiduals() gets the residual after subtracting gravity RTVector3 getAccelResiduals(); void setDebugEnable(bool enable) { m_debug = enable; } protected: void calculatePose(const RTVector3& accel, const RTVector3& mag, float magDeclination); // generates pose from accels and mag RTVector3 m_gyro; // current gyro sample RTVector3 m_accel; // current accel sample RTVector3 m_compass; // current compass sample RTQuaternion m_measuredQPose; // quaternion form of pose from measurement RTVector3 m_measuredPose; // vector form of pose from measurement RTQuaternion m_fusionQPose; // quaternion form of pose from fusion RTVector3 m_fusionPose; // vector form of pose from fusion RTQuaternion m_gravity; // the gravity vector as a quaternion RTFLOAT m_slerpPower; // a value 0 to 1 that controls measured state influence RTQuaternion m_rotationDelta; // amount by which measured state differs from predicted RTQuaternion m_rotationPower; // delta raised to the appopriate power RTVector3 m_rotationUnitVector; // the vector part of the rotation delta bool m_debug; bool m_enableGyro; // enables gyro as input bool m_enableAccel; // enables accel as input bool m_enableCompass; // enables compass a input bool m_compassValid; // true if compass data valid bool m_firstTime; // if first time after reset uint64_t m_lastFusionTime; // for delta time calculation static const char *m_fusionNameMap[]; // the fusion name array }; #endif // _RTFUSION_H