//////////////////////////////////////////////////////////////////////////// // // This file is part of MPU9150Lib // // Copyright (c) 2013 Pansenti, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the // Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include "MPUQuaternion.h" void MPUQuaternionNormalize(MPUQuaternion q) { float length = MPUQuaternionNorm(q); if (length == 0) return; q[QUAT_W] /= length; q[QUAT_X] /= length; q[QUAT_Y] /= length; q[QUAT_Z] /= length; } void MPUQuaternionQuaternionToEuler(const MPUQuaternion q, MPUVector3 v) { float pole = M_PI/2.0f - 0.05f; // fix roll near poles with this tolerance v[VEC3_Y] = asin(2.0f * (q[QUAT_W] * q[QUAT_Y] - q[QUAT_X] * q[QUAT_Z])); if ((v[VEC3_Y] < pole) && (v[VEC3_Y] > -pole)) v[VEC3_X] = atan2(2.0f * (q[QUAT_Y] * q[QUAT_Z] + q[QUAT_W] * q[QUAT_X]), 1.0f - 2.0f * (q[QUAT_X] * q[QUAT_X] + q[QUAT_Y] * q[QUAT_Y])); v[VEC3_Z] = atan2(2.0f * (q[QUAT_X] * q[QUAT_Y] + q[QUAT_W] * q[QUAT_Z]), 1.0f - 2.0f * (q[QUAT_Y] * q[QUAT_Y] + q[QUAT_Z] * q[QUAT_Z])); } void MPUQuaternionEulerToQuaternion(const MPUVector3 v, MPUQuaternion q) { float cosX2 = cos(v[VEC3_X] / 2.0f); float sinX2 = sin(v[VEC3_X] / 2.0f); float cosY2 = cos(v[VEC3_Y] / 2.0f); float sinY2 = sin(v[VEC3_Y] / 2.0f); float cosZ2 = cos(v[VEC3_Z] / 2.0f); float sinZ2 = sin(v[VEC3_Z] / 2.0f); q[QUAT_W] = cosX2 * cosY2 * cosZ2 + sinX2 * sinY2 * sinZ2; q[QUAT_X] = sinX2 * cosY2 * cosZ2 - cosX2 * sinY2 * sinZ2; q[QUAT_Y] = cosX2 * sinY2 * cosZ2 + sinX2 * cosY2 * sinZ2; q[QUAT_Z] = cosX2 * cosY2 * sinZ2 - sinX2 * sinY2 * cosZ2; MPUQuaternionNormalize(q); } void MPUQuaternionConjugate(const MPUQuaternion s, MPUQuaternion d) { d[QUAT_W] = s[QUAT_W]; d[QUAT_X] = -s[QUAT_X]; d[QUAT_Y] = -s[QUAT_Y]; d[QUAT_Z] = -s[QUAT_Z]; } void MPUQuaternionMultiply(const MPUQuaternion qa, const MPUQuaternion qb, MPUQuaternion qd) { MPUVector3 va; MPUVector3 vb; float dotAB; MPUVector3 crossAB; va[VEC3_X] = qa[QUAT_X]; va[VEC3_Y] = qa[QUAT_Y]; va[VEC3_Z] = qa[QUAT_Z]; vb[VEC3_X] = qb[QUAT_X]; vb[VEC3_Y] = qb[QUAT_Y]; vb[VEC3_Z] = qb[QUAT_Z]; MPUVector3DotProduct(va, vb, &dotAB); MPUVector3CrossProduct(va, vb, crossAB); qd[QUAT_W] = qa[QUAT_W] * qb[QUAT_W] - dotAB; qd[QUAT_X] = qa[QUAT_W] * vb[VEC3_X] + qb[QUAT_W] * va[VEC3_X] + crossAB[VEC3_X]; qd[QUAT_Y] = qa[QUAT_W] * vb[VEC3_Y] + qb[QUAT_W] * va[VEC3_Y] + crossAB[VEC3_Y]; qd[QUAT_Z] = qa[QUAT_W] * vb[VEC3_Z] + qb[QUAT_W] * va[VEC3_Z] + crossAB[VEC3_Z]; }