//////////////////////////////////////////////////////////////////////////// // // This file is part of RTIMULib // // Copyright (c) 2014-2015, richards-tech // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the // Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include "RTIMUGD20M303DLHC.h" #include "RTIMUSettings.h" // this sets the learning rate for compass running average calculation #define COMPASS_ALPHA 0.2f RTIMUGD20M303DLHC::RTIMUGD20M303DLHC(RTIMUSettings *settings) : RTIMU(settings) { m_sampleRate = 100; } RTIMUGD20M303DLHC::~RTIMUGD20M303DLHC() { } bool RTIMUGD20M303DLHC::IMUInit() { unsigned char result; #ifdef GD20M303DLHC_CACHE_MODE m_firstTime = true; m_cacheIn = m_cacheOut = m_cacheCount = 0; #endif // set validity flags m_imuData.fusionPoseValid = false; m_imuData.fusionQPoseValid = false; m_imuData.gyroValid = true; m_imuData.accelValid = true; m_imuData.compassValid = true; m_imuData.pressureValid = false; m_imuData.temperatureValid = false; m_imuData.humidityValid = false; // configure IMU m_gyroSlaveAddr = m_settings->m_I2CSlaveAddress; m_accelSlaveAddr = LSM303DLHC_ACCEL_ADDRESS; m_compassSlaveAddr = LSM303DLHC_COMPASS_ADDRESS; setCalibrationData(); // enable the I2C bus if (!m_settings->HALOpen()) return false; // Set up the gyro if (!m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_CTRL5, 0x80, "Failed to boot L3GD20")) return false; if (!m_settings->HALRead(m_gyroSlaveAddr, L3GD20_WHO_AM_I, 1, &result, "Failed to read L3GD20 id")) return false; if (result != L3GD20_ID) { HAL_ERROR1("Incorrect L3GD20 id %d\n", result); return false; } if (!setGyroSampleRate()) return false; if (!setGyroCTRL2()) return false; if (!setGyroCTRL4()) return false; // Set up the accel if (!setAccelCTRL1()) return false; if (!setAccelCTRL4()) return false; // Set up the compass if (!setCompassCRA()) return false; if (!setCompassCRB()) return false; if (!setCompassCRM()) return false; #ifdef GD20M303DLHC_CACHE_MODE // turn on gyro fifo if (!m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_FIFO_CTRL, 0x3f, "Failed to set L3GD20 FIFO mode")) return false; #endif if (!setGyroCTRL5()) return false; gyroBiasInit(); HAL_INFO("GD20M303DLHC init complete\n"); return true; } bool RTIMUGD20M303DLHC::setGyroSampleRate() { unsigned char ctrl1; switch (m_settings->m_GD20M303DLHCGyroSampleRate) { case L3GD20_SAMPLERATE_95: ctrl1 = 0x0f; m_sampleRate = 95; break; case L3GD20_SAMPLERATE_190: ctrl1 = 0x4f; m_sampleRate = 190; break; case L3GD20_SAMPLERATE_380: ctrl1 = 0x8f; m_sampleRate = 380; break; case L3GD20_SAMPLERATE_760: ctrl1 = 0xcf; m_sampleRate = 760; break; default: HAL_ERROR1("Illegal L3GD20 sample rate code %d\n", m_settings->m_GD20M303DLHCGyroSampleRate); return false; } m_sampleInterval = (uint64_t)1000000 / m_sampleRate; switch (m_settings->m_GD20M303DLHCGyroBW) { case L3GD20_BANDWIDTH_0: ctrl1 |= 0x00; break; case L3GD20_BANDWIDTH_1: ctrl1 |= 0x10; break; case L3GD20_BANDWIDTH_2: ctrl1 |= 0x20; break; case L3GD20_BANDWIDTH_3: ctrl1 |= 0x30; break; } return (m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_CTRL1, ctrl1, "Failed to set L3GD20 CTRL1")); } bool RTIMUGD20M303DLHC::setGyroCTRL2() { if ((m_settings->m_GD20M303DLHCGyroHpf < L3GD20_HPF_0) || (m_settings->m_GD20M303DLHCGyroHpf > L3GD20_HPF_9)) { HAL_ERROR1("Illegal L3GD20 high pass filter code %d\n", m_settings->m_GD20M303DLHCGyroHpf); return false; } return m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_CTRL2, m_settings->m_GD20M303DLHCGyroHpf, "Failed to set L3GD20 CTRL2"); } bool RTIMUGD20M303DLHC::setGyroCTRL4() { unsigned char ctrl4; switch (m_settings->m_GD20M303DLHCGyroFsr) { case L3GD20_FSR_250: ctrl4 = 0x00; m_gyroScale = (RTFLOAT)0.00875 * RTMATH_DEGREE_TO_RAD; break; case L3GD20_FSR_500: ctrl4 = 0x10; m_gyroScale = (RTFLOAT)0.0175 * RTMATH_DEGREE_TO_RAD; break; case L3GD20_FSR_2000: ctrl4 = 0x20; m_gyroScale = (RTFLOAT)0.07 * RTMATH_DEGREE_TO_RAD; break; default: HAL_ERROR1("Illegal L3GD20 FSR code %d\n", m_settings->m_GD20M303DLHCGyroFsr); return false; } return m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_CTRL4, ctrl4, "Failed to set L3GD20 CTRL4"); } bool RTIMUGD20M303DLHC::setGyroCTRL5() { unsigned char ctrl5; // Turn on hpf ctrl5 = 0x10; #ifdef GD20M303DLHC_CACHE_MODE // turn on fifo ctrl5 |= 0x40; #endif return m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_CTRL5, ctrl5, "Failed to set L3GD20 CTRL5"); } bool RTIMUGD20M303DLHC::setAccelCTRL1() { unsigned char ctrl1; if ((m_settings->m_GD20M303DLHCAccelSampleRate < 1) || (m_settings->m_GD20M303DLHCAccelSampleRate > 7)) { HAL_ERROR1("Illegal LSM303DLHC accel sample rate code %d\n", m_settings->m_GD20M303DLHCAccelSampleRate); return false; } ctrl1 = (m_settings->m_GD20M303DLHCAccelSampleRate << 4) | 0x07; return m_settings->HALWrite(m_accelSlaveAddr, LSM303DLHC_CTRL1_A, ctrl1, "Failed to set LSM303D CTRL1"); } bool RTIMUGD20M303DLHC::setAccelCTRL4() { unsigned char ctrl4; switch (m_settings->m_GD20M303DLHCAccelFsr) { case LSM303DLHC_ACCEL_FSR_2: m_accelScale = (RTFLOAT)0.001 / (RTFLOAT)16; break; case LSM303DLHC_ACCEL_FSR_4: m_accelScale = (RTFLOAT)0.002 / (RTFLOAT)16; break; case LSM303DLHC_ACCEL_FSR_8: m_accelScale = (RTFLOAT)0.004 / (RTFLOAT)16; break; case LSM303DLHC_ACCEL_FSR_16: m_accelScale = (RTFLOAT)0.012 / (RTFLOAT)16; break; default: HAL_ERROR1("Illegal LSM303DLHC accel FSR code %d\n", m_settings->m_GD20M303DLHCAccelFsr); return false; } ctrl4 = 0x80 + (m_settings->m_GD20M303DLHCAccelFsr << 4); return m_settings->HALWrite(m_accelSlaveAddr, LSM303DLHC_CTRL4_A, ctrl4, "Failed to set LSM303DLHC CTRL4"); } bool RTIMUGD20M303DLHC::setCompassCRA() { unsigned char cra; if ((m_settings->m_GD20M303DLHCCompassSampleRate < 0) || (m_settings->m_GD20M303DLHCCompassSampleRate > 7)) { HAL_ERROR1("Illegal LSM303DLHC compass sample rate code %d\n", m_settings->m_GD20M303DLHCCompassSampleRate); return false; } cra = (m_settings->m_GD20M303DLHCCompassSampleRate << 2); return m_settings->HALWrite(m_compassSlaveAddr, LSM303DLHC_CRA_M, cra, "Failed to set LSM303DLHC CRA_M"); } bool RTIMUGD20M303DLHC::setCompassCRB() { unsigned char crb; // convert FSR to uT switch (m_settings->m_GD20M303DLHCCompassFsr) { case LSM303DLHC_COMPASS_FSR_1_3: crb = 0x20; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)1100; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)980; break; case LSM303DLHC_COMPASS_FSR_1_9: crb = 0x40; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)855; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)760; break; case LSM303DLHC_COMPASS_FSR_2_5: crb = 0x60; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)670; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)600; break; case LSM303DLHC_COMPASS_FSR_4: crb = 0x80; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)450; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)400; break; case LSM303DLHC_COMPASS_FSR_4_7: crb = 0xa0; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)400; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)355; break; case LSM303DLHC_COMPASS_FSR_5_6: crb = 0xc0; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)330; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)295; break; case LSM303DLHC_COMPASS_FSR_8_1: crb = 0xe0; m_compassScaleXY = (RTFLOAT)100 / (RTFLOAT)230; m_compassScaleZ = (RTFLOAT)100 / (RTFLOAT)205; break; default: HAL_ERROR1("Illegal LSM303DLHC compass FSR code %d\n", m_settings->m_GD20M303DLHCCompassFsr); return false; } return m_settings->HALWrite(m_compassSlaveAddr, LSM303DLHC_CRB_M, crb, "Failed to set LSM303DLHC CRB_M"); } bool RTIMUGD20M303DLHC::setCompassCRM() { return m_settings->HALWrite(m_compassSlaveAddr, LSM303DLHC_CRM_M, 0x00, "Failed to set LSM303DLHC CRM_M"); } int RTIMUGD20M303DLHC::IMUGetPollInterval() { return (400 / m_sampleRate); } bool RTIMUGD20M303DLHC::IMURead() { unsigned char status; unsigned char gyroData[6]; unsigned char accelData[6]; unsigned char compassData[6]; #ifdef GD20M303DLHC_CACHE_MODE int count; if (!m_settings->HALRead(m_gyroSlaveAddr, L3GD20_FIFO_SRC, 1, &status, "Failed to read L3GD20 fifo status")) return false; if ((status & 0x40) != 0) { HAL_INFO("L3GD20 fifo overrun\n"); if (!m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_CTRL5, 0x10, "Failed to set L3GD20 CTRL5")) return false; if (!m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_FIFO_CTRL, 0x0, "Failed to set L3GD20 FIFO mode")) return false; if (!m_settings->HALWrite(m_gyroSlaveAddr, L3GD20_FIFO_CTRL, 0x3f, "Failed to set L3GD20 FIFO mode")) return false; if (!setGyroCTRL5()) return false; m_imuData.timestamp += m_sampleInterval * 32; return false; } // get count of samples in fifo count = status & 0x1f; if ((m_cacheCount == 0) && (count > 0) && (count < GD20M303DLHC_FIFO_THRESH)) { // special case of a small fifo and nothing cached - just handle as simple read if (!m_settings->HALRead(m_gyroSlaveAddr, 0x80 | L3GD20_OUT_X_L, 6, gyroData, "Failed to read L3GD20 data")) return false; if (!m_settings->HALRead(m_accelSlaveAddr, 0x80 | LSM303DLHC_OUT_X_L_A, 6, accelData, "Failed to read LSM303DLHC accel data")) return false; if (!m_settings->HALRead(m_compassSlaveAddr, 0x80 | LSM303DLHC_OUT_X_H_M, 6, compassData, "Failed to read LSM303DLHC compass data")) return false; if (m_firstTime) m_imuData.timestamp = RTMath::currentUSecsSinceEpoch(); else m_imuData.timestamp += m_sampleInterval; m_firstTime = false; } else { if (count >= GD20M303DLHC_FIFO_THRESH) { // need to create a cache block if (m_cacheCount == GD20M303DLHC_CACHE_BLOCK_COUNT) { // all cache blocks are full - discard oldest and update timestamp to account for lost samples m_imuData.timestamp += m_sampleInterval * m_cache[m_cacheOut].count; if (++m_cacheOut == GD20M303DLHC_CACHE_BLOCK_COUNT) m_cacheOut = 0; m_cacheCount--; } if (!m_settings->HALRead(m_gyroSlaveAddr, 0x80 | L3GD20_OUT_X_L, GD20M303DLHC_FIFO_CHUNK_SIZE * GD20M303DLHC_FIFO_THRESH, m_cache[m_cacheIn].data, "Failed to read L3GD20 fifo data")) return false; if (!m_settings->HALRead(m_accelSlaveAddr, 0x80 | LSM303DLHC_OUT_X_L_A, 6, m_cache[m_cacheIn].accel, "Failed to read LSM303DLHC accel data")) return false; if (!m_settings->HALRead(m_compassSlaveAddr, 0x80 | LSM303DLHC_OUT_X_H_M, 6, m_cache[m_cacheIn].compass, "Failed to read LSM303DLHC compass data")) return false; m_cache[m_cacheIn].count = GD20M303DLHC_FIFO_THRESH; m_cache[m_cacheIn].index = 0; m_cacheCount++; if (++m_cacheIn == GD20M303DLHC_CACHE_BLOCK_COUNT) m_cacheIn = 0; } // now fifo has been read if necessary, get something to process if (m_cacheCount == 0) return false; memcpy(gyroData, m_cache[m_cacheOut].data + m_cache[m_cacheOut].index, GD20M303DLHC_FIFO_CHUNK_SIZE); memcpy(accelData, m_cache[m_cacheOut].accel, 6); memcpy(compassData, m_cache[m_cacheOut].compass, 6); m_cache[m_cacheOut].index += GD20M303DLHC_FIFO_CHUNK_SIZE; if (--m_cache[m_cacheOut].count == 0) { // this cache block is now empty if (++m_cacheOut == GD20M303DLHC_CACHE_BLOCK_COUNT) m_cacheOut = 0; m_cacheCount--; } if (m_firstTime) m_imuData.timestamp = RTMath::currentUSecsSinceEpoch(); else m_imuData.timestamp += m_sampleInterval; m_firstTime = false; } #else if (!m_settings->HALRead(m_gyroSlaveAddr, L3GD20_STATUS, 1, &status, "Failed to read L3GD20 status")) return false; if ((status & 0x8) == 0) return false; if (!m_settings->HALRead(m_gyroSlaveAddr, 0x80 | L3GD20_OUT_X_L, 6, gyroData, "Failed to read L3GD20 data")) return false; m_imuData.timestamp = RTMath::currentUSecsSinceEpoch(); if (!m_settings->HALRead(m_accelSlaveAddr, 0x80 | LSM303DLHC_OUT_X_L_A, 6, accelData, "Failed to read LSM303DLHC accel data")) return false; if (!m_settings->HALRead(m_compassSlaveAddr, 0x80 | LSM303DLHC_OUT_X_H_M, 6, compassData, "Failed to read LSM303DLHC compass data")) return false; #endif RTMath::convertToVector(gyroData, m_imuData.gyro, m_gyroScale, false); RTMath::convertToVector(accelData, m_imuData.accel, m_accelScale, false); m_imuData.compass.setX((RTFLOAT)((int16_t)(((uint16_t)compassData[0] << 8) | (uint16_t)compassData[1])) * m_compassScaleXY); m_imuData.compass.setY((RTFLOAT)((int16_t)(((uint16_t)compassData[2] << 8) | (uint16_t)compassData[3])) * m_compassScaleXY); m_imuData.compass.setZ((RTFLOAT)((int16_t)(((uint16_t)compassData[4] << 8) | (uint16_t)compassData[5])) * m_compassScaleZ); // sort out gyro axes m_imuData.gyro.setX(m_imuData.gyro.x()); m_imuData.gyro.setY(-m_imuData.gyro.y()); m_imuData.gyro.setZ(-m_imuData.gyro.z()); // sort out accel data; m_imuData.accel.setX(-m_imuData.accel.x()); // sort out compass axes RTFLOAT temp; temp = m_imuData.compass.z(); m_imuData.compass.setZ(-m_imuData.compass.y()); m_imuData.compass.setY(-temp); // now do standard processing handleGyroBias(); calibrateAverageCompass(); calibrateAccel(); // now update the filter updateFusion(); return true; }